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Planar flow in the interfacial region of an open porous medium is investigated by
finding solutions for Stokes flow in a channel partially filled with an array of circular
cylinders beside one wall. The cylinders are in a square array oriented across the flow
and are widely spaced, so that the solid volume fraction φ is 0.1 or less. For this
spacing, singularity methods are appropriate and so they are used to find solutions
for both planar Couette flow and Poiseuille flow in the open portion of the channel.
The solutions, accurate to O(φ), are used to calculate the apparent slip velocity at the
interface, Us, and results obtained for Us are presented in terms of a dimensionless
slip velocity. For shear-driven flow, this dimensionless quantity is found to depend
only weakly on φ and to be independent of the height of the array relative to the
height of the channel and independent of the cylinder size relative to the height of the
channel. For pressure-driven flow, Us is found to be less than that under comparable
shear-flow conditions, and dependent on cylinder size and filling fraction in this case.
Calculations also show that the external flow penetrates the porous medium very little,
even for sparse arrays, and that Us is about one quarter of the velocity predicted by
the Brinkman model.

1. Introduction
When a fluid flows through a channel bounded by a porous medium, or flows

around a porous body, the no-slip condition at the surface of the porous medium
generally does not apply. There is effectively a slip velocity at the surface, and
studies of interfacial flow have focused on the dependence of this velocity on the
characteristics of the medium and the external flow. But only a few such studies have
been done and so it is not known how to prescribe the velocity at the boundary for
an arbitrary situation. The flow may be driven by shear or pressure, and the basic
situation is shear flow over and through a semi-infinite porous medium adjacent to a
channel, as sketched in figure 1. The flow is driven by the other wall of the channel
(not seen in the figure) moving at a constant velocity and generating planar shear
flow in the channel. Figure 1 illustrates the general velocity profile: away from the
interface the velocity becomes linear in the channel and inside the porous medium
the velocity decays to zero. The quantities of particular interest are the velocity at
the interface, the so-called slip velocity, and the penetration of flow into the porous
medium.

When flow in the channel is driven by pressure instead of shear, the velocity
profile away from the interface becomes parabolic while inside the porous medium
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Figure 1. The velocity profile for parallel flow over and through a porous medium. The flow is
driven by shear, created by an unseen moving wall parallel with and above the interface. The
streamwise velocity u decreases from linear in the channel (shear rate γ̇) to zero in the medium. The
slip velocity at the interface is designated Us.
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Figure 2. The velocity profile for pressure-driven planar flow in a channel and in the adjacent
porous medium. The velocity deep in the medium is UD , as given by Darcy’s law, and the velocity
at the interface is the sum of UD and the slip velocity Us.

the velocity is constant, as indicated in figure 2. Hence it appears that two different
cases need to be considered: shear-driven and pressure-driven flows. However, for a
pressure-driven flow, the velocity close to the interface is linear or nearly linear, similar
to the shear-driven case. Hence the flow just outside the porous medium appears to
be the same for both cases, i.e. linear shear flow. Both cases will be discussed in more
detail in a later section, and the results of our work will eventually show just how
closely the two cases are related. For the moment, though, we take the approach that
shear-driven flow is the more basic flow, with possible modification when the flow is
pressure-driven.

In both figures 1 and 2, the slip velocity is denoted by Us. This velocity is
unambiguous in the former but not in the latter. That is, in the pressure-driven
case, there is a uniform velocity in the porous medium, the drift velocity UD , and
the velocity at the interface is the sum of Us and UD . The sum has been termed
the slip velocity by some authors, following Beavers & Joseph (1967), but it seems
more logical to distinguish between the velocity caused by penetration of the external
flow and the velocity caused by the pressure gradient in the porous medium. That
distinction is made here. By associating Us with penetration of the outer flow, figures
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1 and 2 are consistent and it will be straightforward later to make comparisons of
results from the two cases.

The slip velocity is of little interest when it is small. For a porous medium made of
compacted particles, resistance to flow in the material is so large that the slip velocity
is small and there is little penetration. Flow penetrates the medium only when its
solid volume fraction, φ, is low, generally less than about 0.1. A volume fraction
in this range is possible only if the medium is made of fibres or fibre-like particles,
because a firm structure cannot be formed otherwise. When φ is in the range of
0.1 and less, interfibre distances are large and there is considerable open space. For
example, when φ is 0.1 and the fibres are evenly spaced, the distance between fibres is
about three times the fibre cross-dimension. With this spacing, the external flow can
easily penetrate the structure. While fibrous media generally have φ values around
0.1, values may be as low as 0.005, as the data collected by Jackson & James (1986)
show. Values below 0.005 are possible, but only when the fibres are polymer chains in
solution. In this situation, the entangled chains form a porous medium whose shape
is maintained by diffusive forces (Brownian motion) or by electrostatic charges along
the chains. Such a situation occurs, for example, when polymer chains are attached to
a surface and extend outward because the fluid flowing over the surface is a solvent
of the polymer. To sum up, the relevant porous media are necessarily fibrous, and the
media range from polymer chains in solution to filters and insulation.

1.1. Dimensional reasoning

(i) Shear-driven flow

In studying flow in the interfacial region, it is useful to review what dimensional
reasoning reveals about the situation. For shear-driven flow, the external flow is
specified by the shear rate γ̇. Fluid density is not considered a factor because velocities
and pore dimensions in practical situations are so small that Reynolds numbers are
ordinarily much less than unity. Hence the only relevant fluid parameter is the
viscosity. In characterizing the porous medium, it is assumed for the moment that
the only necessary parameter is the permeability k, as it appears in Darcy’s law for
uniform flow. While this is a reasonable assumption for a general porous medium,
it may not be appropriate for a medium which is described by two or more length
scales. This assumption will be addressed later because the media studied here have
in fact two length scales, and so the development here is based on the assumption
that the single most important length scale,

√
k, is sufficient. But when the flow is

shear flow, as in the present case, flow resistance probably depends not only on k but
also on the geometrical details of the medium.

The above parameters influence how the velocity u depends on the transverse
distance ỹ, i.e. the general relation for u is

u =F(ỹ, k, γ̇, geometry), (1)

where F means ‘some function of’, where u is spatially-averaged where necessary,
and where ỹ is measured from the interface, positive in the direction of the channel.
Viscosity is not included as a variable because there are no other dynamical quantities.
By dimensional analysis, this equation reduces to

u

γ̇
√
k

=F
(
ỹ√
k
, geometry

)
. (2)
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The interfacial (slip) velocity Us ≡ u(0) is therefore

Us = γ̇
√
kf1, (3)

where f1 is a function of geometry only.
The above equation is not in the form of a boundary condition, but it can be

made into one by considering the velocity gradient, du/dỹ. By differentiating u or by
dimensional reasoning, the gradient is

du

dỹ
= γ̇F

(
ỹ√
k
, geometry

)
, (4)

where F continues to denote a general function of its independent variables, and is
different from the general functions in (1) and (2). At the wall,

du

dỹ
(0) = γ̇f2, (5)

where f2 is another function of geometry. The shear rate γ̇ can be eliminated by
combining this relation with (3) to yield

du

dỹ
(0)− f2

f1

√
k
u(0) = 0. (6)

Hence the boundary condition on u at the interface is homogeneous.

(ii) Pressure-driven flow
Now consider the situation when the flow is driven by a pressure gradient and

not by a moving wall, as illustrated in figure 2. In this case, ∂p/∂ỹ = 0 and, for a
gradient of G(= −dp/dx), the velocity in the channel is, using the coordinate system
of figure 2,

u(ỹ) =
G(ỹW − ỹ2)

2µ
+Us

(
1− ỹ

W

)
, (7)

where W is the channel width and µ is the viscosity. The shear rate at the interface,
γ̇w , is

γ̇w =
du

dỹ
(0) =

GW

2µ
− Us

W
. (8)

The interfacial shear rate depends on the the first term alone if the slip velocity is
small enough, that is,

γ̇w ' GW

2µ
if Us � GW 2

2µ
. (9)

Since GW 2/8µ is approximately Umax, the maximum velocity in the channel, the
condition under which the interfacial shear rate γ̇ is approximated well by the wall
shear rate GW/2µ is

Us � 4Umax. (10)

This condition is easily met. Later work will show that Us is less than 5% of Umax

for practical situations and no more than 20% for the most extreme situations. In
the latter cases, the approximation (10) is accurate to 5% and so the approximation
is appropriate in general.

Dimensional reasoning is now applied to pressure-driven flows. In these cases
the velocity depends on G and so one of the independent variables is a dynamical
quantity, in contrast to the purely kinematical situation when the flow is shear-driven.
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For dimensional consistency, a second dynamical variable must be introduced, which
is µ. The general relation for u is thus

u =F(ỹ, k, G, µ,W , geometry). (11)

In forming a dimensionless equation, the length scale is chosen to be
√
k because it is

far more important than the alternative, W . A natural dimensionless formulation is

uµ

Gk
=F

(
ỹ√
k
,
W√
k
, geometry

)
. (12)

Equation (9) shows that G/µ is approximated well by 2γ̇w/W , and so the dynam-
ical variable G can be eliminated from (12) to produce a relation which is purely
kinematical. If the focus is again on the interfacial region and if the flow there is
characterized by the shear rate γ̇w , then the distance to the far wall, W , is no longer
relevant. More particularly, if W is many times

√
k, which is normally the case, then

the far wall should not be a factor and flow at the interface should depend only on
the local flow conditions, i.e. on the linear portion of the parabolic profile. When W
is not a factor, therefore, (12) reduces to

u

γ̇w
√
k

=F
(
ỹ√
k
, geometry

)
, (13)

which has the same form as the shear-driven case, i.e. as equation (2). Consequently,
the velocity profile for a pressure-driven flow should have the same interfacial features
as those in the equivalent shear-driven flow when W is much greater than

√
k.

1.2. The slip coefficient

In their landmark work, Beavers & Joseph (1967) investigated slip at the interface
for pressure-driven flow and proposed the following equation as the flow condition
at the interface:

du

dỹ
(0) =

α√
k

(Us −UD), (14)

where Us in this case refers to the total velocity at the interface and α is the so-called
‘slip coefficient’. This equation is equivalent to (6), which applies to shear-driven
flow. But it also applies to pressure-driven flow when W � √k, as shown by the
preceding paragraph and (13). The equivalence of (14) with (6) shows that α is equal
to f2/f1; since f1 and f2 are functions of geometry only, α should also depend only
on geometry.

Beavers & Joseph conducted experiments with several ‘natural’ porous media –
foametals and axolites (compact granular materials) – to determine values of α. Their
experiments yielded an α value of 0.1 for two axolites and values of 0.8, 1.5 and 4 for
three foametals. This range demonstrates that geometry is important at the interface,
even though it is a secondary parameter in the bulk of the medium. Other studies
have generated further values of α. Taylor (1971) analysed flow past a model porous
medium – a plate with deep rectangular grooves aligned with the flow – and found
that α has a minimum of 1.3 and increases to several times this value as the walls
between the grooves become thinner. Another theoretical work in which values of
α were found was the study by Sahraoui & Kaviany (1992). They used numerical
techniques to investigate flow past arrays of circular cylinders and found that, for a
square array, α increased from 1.2 to 4 as the porosity increased, i.e. α depends on
more than geometry because the geometry is fixed with a square array. They also
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showed that α may be as low as 0.4 when cylinders on the outermost row are not
aligned. Taken together, these prior works show that α is of order 1 and that it can
vary by at least a factor of ten, depending on the geometry.

In these works, the interface was taken to be the flat or machined surface of the
medium, or, in the case of arrays of cylinders, to be the plane tangent to the outer
edges of the cylinders. A prior study in which the location of the interface was
exterior to the medium was that by Sangani & Behl (1989), who investigated flow
over semi-infinite periodic arrays of spheres. Using singular solutions of the Stokes
and Laplace equations, they determined flow fields in the interfacial region and, for
the chosen location of the interface, showed good agreement of the slip velocity with
that predicted by Brinkman’s equation. Since this equation is widely used when shear
occurs in a porous medium, it is reviewed next.

1.3. Brinkman’s equation and penetration

The equation developed by Brinkman (1947) is a combination of Stokes’ equation
and Darcy’s law:

∇p = µ∗∇2v − µ

k
v, (15)

where ∇p is the pressure gradient, v is the velocity vector, µ is the viscosity and µ∗
is the effective viscosity. Because the equation is second order in velocity, it can be
matched to the second-order Stokes’ equation for the external flow and consequently
provides continuity of both stress and velocity at the interface. The equation has
been rigorously derived, and the relation of the effective viscosity to the actual fluid
viscosity has been investigated. The studies show that µ∗/µ is generally greater than
unity and, in the most authoritative of these, Kim & Russel (1985) establish that the
ratio is 1 + 5φ/2 to order φ. Since the present work will be related to Brinkman’s
equation, and since the range of φ in the present work is 0.001 to 0.1, the most
appropriate value of µ∗ in Brinkman’s equation is µ, with a possible modification
after comparisons are made.

For the basic wall-driven flow in figure 1, the single-viscosity Brinkman equation
reduces to

d2u

dỹ2
− 1

k
u = 0 (16)

and the solution of this equation in the porous medium, i.e. for ỹ 6 0, is

u = Us eỹ/
√
k. (17)

This relation shows that the depth of penetration is of order
√
k, which in turn is

of order of the pore size, particularly in a sparse medium. To better understand the
relation between penetration and pore size, consider the simplest model of a sparse
medium, a square array of parallel rods. For flow across the rods, the dependence of
permeability on solidity is approximated well by

k

a2
' 1

8φ
ln

1

φ
, (18)

where a is the rod radius (see, for example, Jackson & James 1986). If 2L is the rod
spacing, then φ = πa2/4L2, and

√
k = 0.6L when φ is 0.1. Under these conditions, the

velocity at the second row of cylinders, where ỹ ' −2L, is about 4% of its value at
the interface.

Hence Brinkman’s equation predicts that the depth of penetration is comparable
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with the pore size, and this result depends only weakly on φ because of the log term
in (18). This relation of penetration to pore size is questionable, however, because
Darcy’s law is not appropriate at this scale. That is, this continuum equation is
valid over distances much larger than

√
k, and not on the scale of

√
k or the pore

size. Although Brinkman’s equation has been validated theoretically and appears
to be accurate in some cases (e.g. Sangani & Behl 1989), it cannot be expected to
be accurate in general nor to provide information about the flow field close to the
interface. In fact, the most detailed knowledge about flow near the interface has come
from numerical studies and results from these are not consistent with Brinkman’s
equation.

1.4. Numerical studies

The principal numerical studies are those of Larson & Higdon (1986, 1987). Their
porous media are arrays of rods, primarily square arrays, aligned with and across the
flow. In their studies, the pressure gradient is zero and the velocity profile is linear
away from the interface. Their streamline patterns reveal eddies within the arrays
when the flow is across the array, with eddy location depending on array geometry
and φ. The eddy motion is unexpected because Brinkman’s equation predicts only
positive values of the velocity.

In addition to finding streamline patterns revealing the circulation, Larson &
Higdon calculated the slip velocity, which they took to be the average velocity along
the line joining the rod centres. They used two methods to find this velocity, one based
on flow rate in the channel and the other based on Brinkman’s equation and flow
rate in the porous medium. Calculated by either method, the slip velocity decreases
with φ as expected, but some values are negative and the two sets of results differ by
as much as 10 to 1 in magnitude. It is difficult to envisage a negative slip velocity,
and their negative values are probably due to their method of calculation because
their streamline patterns suggest positive velocities on the plane in question.

Another numerical investigation of flow across rod arrays was carried out by
Sahraoui & Kaviany (1992). They found values of the slip coefficient for various
rod arrangements, and these values show a strong dependence on rod configuration
right at the interface. Even so, the values appear to have limited usefulness because
they pertain to high values of φ – a minimum of 0.2, and 0.52 in many cases – and in
this regime the slip velocity is zero for practical purposes. Consequently, numerical
studies have revealed an unexpected circulation but have done little to improve our
knowledge of the slip velocity.

1.5. Objectives

Even though the general features of interfacial flow are understood, further knowledge
is needed about the slip velocity and the degree of penetration. While both are
important and in fact related, the present work focuses on the velocity because it
affects the flow rate in the channel.

The objective, then, is to find the slip velocity for a model porous medium. The
selected model is an array of rods oriented across the flow because it is the most
appropriate model at the low solid fractions necessary for discernible slip. This model
is more suitable than, for example, an array of spheres because the latter cannot be
realized physically. The choice of orientation is also governed by practicality. If the
rod array were aligned with the flow, the problem would be easier to solve; but in
fibrous materials the fibres are much more likely to be aligned across the flow and so
that is the situation addressed here. For such problems, computational techniques are
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Figure 3. Square and equilateral arrays of cylinders partially filling a planar channel of total width
D. The cylinder diameter is 2a and the distance between cylinders is 2L. The flow is driven by the
upper wall moving at a constant speed U.

the methods of choice these days, but the prior numerical studies have not yielded
particularly useful results for the slip velocity. Because the rods must be widely spaced
to generate a slip velocity of significance, analytical methods are also appropriate.
Hence the plan is to use singularity methods to solve for the flow field, and from the
solution to determine the slip velocity at the interface. The scope of the plan is to
find this velocity for both shear-driven and pressure-driven flows, over a wide range
in φ, and for different array configurations.

2. Two-dimensional analysis for shear-driven flow
Consider a channel of width D which is partially filled with an array of circular

cylinders in rows parallel with the wall, as illustrated in figure 3. The array may be
square or equilateral, as suggested in the figure, and the former is treated first. Steady
two-dimensional creeping flow is generated by the uniform translation of the upper
wall and disturbed by the presence of the small cylinders. Let Cartesian coordinates
and corresponding unit vectors be defined so that the stationary wall is at y = 0 and
the wall at y = D moves with speed Ux̂. Cylinders of radius a are placed with their
centres at {(2mL, 2nL); 1 6 m 6 M,−∞ < n < ∞}, where 2ML < D. The velocity
field v(x, y) satisfies no-slip conditions at the walls and cylinder boundaries and the
creeping flow equations

µ∇2v = ∇p, ∇ · v = 0, (19)

where µ is the viscosity and p the dynamic pressure. Equations (19) allow a stream
function ψ to be introduced such that

vx =
∂ψ

∂y
, vy = −∂ψ

∂x
, ∇4ψ = 0. (20)

The purpose of the following calculation is to construct an approximation to the
velocity field v(x, y), evidently periodic in x with period 2L, that satisfies the no-slip
conditions exactly on the channel walls and up to order φ on the cylinders, where the
volume fraction φ is given by

φ = πa2/4L2. (21)
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2.1. Point force arrays

The stream function due to a point force 4πµx̂ at (x0, y0) is (e.g. Davis 1993)

1
2
(y − y0){1− ln [(x− x0)

2 + (y − y0)
2]}.

Hence the stream function due to a periodic array of oppositely directed point force
singularities at {(2lL,±y0);−∞ < l < ∞} in the presence of rigid walls at y = 0, D is
given by

ψ∞2 = − 1
2
(y − y0) ln

[
cosh

π(y − y0)

L
− cos

πx

L

]
+ 1

2
(y + y0) ln

[
cosh

π(y + y0)

L
− cos

πx

L

]

+ψ0(y, y0) +

∞∑
s=1

ψs(y, y0) cos
sπx

L
, (22)

in which the first term contains all the singularities and is obtained by Fourier
transform methods and in which additional terms required to ensure no-slip at
y = 0, D are such that

ψs(y, y0, D) = −2

s

{
DH∗(ky, ky0; kD) +

∂

∂k

[
e−kD

cosh ky sinh ky0

sinh kD

]}
k=sπ/L

, (23a)

dψ0

dy
= −2πyy0

LD
+ 1

2
Gy(D − y). (23b)

Here G is set equal to zero to avoid introducing a pressure gradient and H∗ is
related to the symmetric function

H =
k

2D

(
cosh kD + 1

sinh kD − kD
)
∂

∂k

[
cosh k( 1

2
D − y)

cosh 1
2
kD

]
∂

∂k

[
cosh k( 1

2
D − y0)

cosh 1
2
kD

]

+
k

2D

(
cosh kD − 1

sinh kD + kD

)
∂

∂k

[
sinh k( 1

2
D − y)

sinh 1
2
kD

]
∂

∂k

[
sinh k( 1

2
D − y0)

sinh 1
2
kD

]
(24)

by

∂H∗

∂y
= kH. (25)

The first approximation to the velocity field is then

v =
U

D

[
yx̂− 2L

M∑
m=1

Amv
∞
2 (x, y, 2mL;D)

]
, (26)

in which the along-channel component is given, from (22) and (23), by

v∞2x =
∂ψ∞2
∂y

= −1

2
ln

[
cosh π(y − y0)/L− cos πx/L

cosh π(y + y0)/L− cos πx/L

]

− π

2L

[
(y − y0) sinh π(y − y0)/L

cosh π(y − y0)/L− cos πx/L
− (y + y0) sinh π(y + y0)/L

cosh π(y + y0)/L− cos πx/L

]

+
π

L

∞∑
s=1

V∞2x

(
sπy

L
,
sπy0

L
;
sπD

L

)
cos

sπx

L
− 2πyy0

DL
, (27)
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where

V∞2x = −2DH(ky, ky0; kD)− 2

(
1

k
+

∂

∂k

)[
e−kD

sinh ky sinh ky0

sinh kD

]
. (28)

The physical interpretation of the coefficients {Am} in (26) is that the force (per
unit length) on each cylinder is 8πµUAmL/D. Equations for {Am} can be obtained
from (26) by requiring zero mean velocity at each cylinder but the radius a appears
only in the term ln (2L/πa) and so the effects of non-zero φ, defined by (21), are
essentially ignored. The second approximation constructed below includes potential
doublet and Faxén Law terms and takes account of the local shear due to both the
imposed flow and the other singularities in order to ensure no slip on each cylinder
up to order a2/L2.

2.2. Higher-order singularities

The addition of suitable potential doublet terms to (26) yields

v =
U

D

[
yx̂− 2L

M∑
m=1

Am

{
v∞2 (x, y, 2mL;D)

+
a2

4

〈(
∂2

∂x2
+

∂2

∂y2
0

)
v∞2 (x, y, y0;D)

〉
y0=2mL

}]
,

from which it is noted that the Faxén Law terms are similar and preserve symmetry
in y, y0.

Let coefficients {Gn} and {Gn} be defined by writing the vector shear rate at (0, 2nL)
in the form

U

2D
[(Gn + Gn)x̂+ (−Gn + Gn)ŷ] .

In the velocity field, these coefficients respectively multiply the local rotational and
extensional components of the form (U/2D)[(y − y0)x̂ ∓ xŷ], which, for no slip at
r = a (referred to suitable polar coordinates), respectively require the addition of the
stream function terms:

−Ua
2

2D
ln r,

Ua2

2D

(
1− a2

2r2

)
cos 2θ.

The corresponding additional velocities are, according to (20),

Ua2

2D

(
x̂
∂

∂y
− ŷ ∂

∂x

){
− 1

2
ln [x2 + (y − y0)

2],
x2 − (y − y0)

2

x2 + (y − y0)2

[
1−

1
2
a2

x2 + (y − y0)2

]}

= −Ua
2

2D

{
(y − y0)x̂− xŷ
x2 + (y − y0)2

, a2 (y − y0)x̂+ xŷ

[x2 + (y − y0)2]2

+
4x(y − y0)[xx̂+ (y − y0)ŷ]

[x2 + (y − y0)2]2

[
1− a2

x2 + (y − y0)2

]}
.

The terms with factor a4 are necessary to satisfy no slip at a distance a but are
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negligible at distances of order L. Moreover, it is possible to write

4x(y − y0)[xx̂+ (y − y0)ŷ]

[x2 + (y − y0)2]2
= −2

(y − y0)x̂− xŷ
x2 + (y − y0)2

+2
∂

∂y0

{
−x̂ 1

2
ln [x2 + (y − y0)

2] + x
xx̂+ (y − y0)ŷ

x2 + (y − y0)2

}
, (29)

which contains the above rotlet and a stresslet, namely the y0-derivative of the point
force singularity already considered.

Thus, in order to complete the construction of v to the required accuracy, it is
necessary only to determine the channel flow generated by a row of rotlet singularities.
In doing so, the sense of the image rotlets is chosen to be consistent, in terms of the
velocity component cancelled at y = 0, with the flow generated by the stresslets. This
has the effect of both reducing the amount of computation needed for the matrix
of coefficients in the equations (35), below, for {Am} and ensuring that the matrix
is demonstrably symmetric. The x̂ component of the velocity field generated by a
periodic array of negatively directed rotlets at {(2nL,± y0);−∞ < n < ∞} in the
presence of rigid walls at y = 0, D is given by

vR2x =
π

2L

[
sinh [π(y − y0)/L]

cosh [π(y − y0)/L]− cos[πx/L]
+

sinh [π(y + y0)/L]

cosh [π(y + y0)/L]− cos[πx/L]

−2y

D
+ 2

∞∑
s=1

U2x

(
sπy

L
,
sπy0

L
;
sπD

L

)
cos

sπx

L

]
, (30)

after imposing a zero pressure gradient and with

U2x(ky, ky0, kD) = −2e−kD
sinh ky cosh ky0

sinh kD

+k

[
sinh k(D − y0)− sinh ky0

sinh kD − kD
]
∂

∂k

[
cosh k( 1

2
D − y)

cosh 1
2
kD

]

+k

[
sinh k(D − y0) + sinh ky0

sinh kD + kD

]
∂

∂k

[
sinh k( 1

2
D − y)

sinh 1
2
kD

]
.

By first showing, from (24) and (25), that

kDH∗ − D∂H
∂y

= U2x(ky0, ky, kD) + 2e−kD
cosh ky sinh ky0

sinh kD
,

it is readily observed that

2U2x

(
sπy0

L
,
sπy

L
;
sπD

L

)
=
∂V∞2x
∂y

(
sπy

L
,
sπy0

L
;
sπD

L

)
− s2π

L
ψs(y, y0, D), (31)

where ψs and V∞2x are respectively given by (23) and (28). The sense of the image
rotlets is chosen for consistency with the y0-derivatives of the image point forces, i.e.
to produce a zero along-channel velocity at y = 0. This furnishes an advantage in the
subsequent calculations.
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2.3. The O(φ) approximation

The shear rates are given, from (26) and (27), by

Gn = 1− 2π

M∑
m=1

EnmAm, Gn = 1− 2π

M∑
m=1

EnmAm, (32)

where, after some manipulation,

Enm = −4mL

D
+ coth π(n+ m) + 2

∞∑
s=1

U2x

(
2πms, 2πns,

sπD

L

)

−
{

coth π(n− m) (n 6= m)

0 (n = m),

1
2
[Enm + Enm] = −4mL

D
+ coth π(n+ m)− π(n+ m)

2 sinh2 π(n+ m)

+

∞∑
s=1

∂V∞2x
∂y

(
2πns, 2πms,

sπD

L

)

−


coth π(n− m)− π(n− m)

2 sinh2 π(n− m)
(n 6= m)

0 (n = m), (33)

The complete O(φ) approximation to the velocity field is therefore the following
extension of (26):

v =
U

D

[
yx̂− 2L

M∑
m=1

Am

{
v∞2 (x, y, 2mL;D)

+
a2

4

〈(
∂2

∂x2
+

∂2

∂y2
0

)
v∞2 (x, y, y0;D)

〉
y0=2mL

}

−a
2

2

M∑
q=1

{
(Gq − 2Gq)vR2 (x, y, 2qL;D) + 2Gq ∂v

∞
2

∂y0

(x, y, 2qL;D)

}]
, (34)

after exploiting (29) to construct the last series.
The no-slip condition is approximately imposed by now requiring zero velocity up

to O(φ) at each cylinder centred at (0, 2nL) {1 6 n 6M}. This involves taking special
account of the singularities at this point, including the Faxén Law contribution,
substituting (27) and (30) and making use of the coefficients defined by (33) to obtain
the following linear system of equations for {Am; 1 6 m 6M}:

n = An

{
− ln

πa

2L
− 1

2
− π2a2

12L2
+ ln sinh 2πn+ 2πn coth 2πn

−8πn2L

D
− π2a2

4L2 sinh2 2πn
+
π

L

∞∑
s=1

V∞2x

(
2πns, 2πns,

sπD

L

)



Flow at the interface of a model fibrous porous medium 59

+
πa2

2L

[
∇2

∞∑
s=1

V∞2x

(
sπy

L
,
sπy0

L
;
sπD

L

)
cos

sπx

L

]
(0,2nL,2nL)

}

+

M∑
m=1,m6=n

Am

{
− ln

sinh π|n− m|
sinh π(n+ m)

− 8πnmL

D
− π(n− m) coth π(n− m)

+π(n+ m) coth π(n+ m) +
π

L

∞∑
s=1

V∞2x

(
2πns, 2πms,

sπD

L

)

+
π2a2

4L2 sinh2 π(n− m)
− π2a2

4L2 sinh2 π(n+ m)

+
πa2

4L

[
(∇2 + ∇2

0)

∞∑
s=1

V∞2x

(
sπy

L
,
sπy0

L
;
sπD

L

)
cos

sπx

L

]
(0,2nL,2mL)

}

+
πa2

8L2

M∑
q=1

[(Gq − 2Gq)Eqn + 2Gq(Eqn + Eqn)] (1 6 n 6M), (35)

in which the last summation reduces, after substitution of (32) and a cancellation, to

πa2

8L2

M∑
q=1

(Eqn + 2Eqn)− π2a2

4L2

M∑
m=1

Am

M∑
q=1

(EqmEqn + 2EqmEqn).

This last identity establishes the symmetry of the matrix of coefficients in (35), whose
evaluation is assisted by (28), (31) and (33).

2.4. Mean flow along the channel

In regions unobstructed by cylinders, i.e.|y − 2nL| > a (1 6 n 6 M), the mean value
of v is, from (34)

U

D
x̂

[
y − 4π

M∑
m=1

Am

(
min (y, 2mL)− 2mL

y

D

)

+
πa2

2L

M∑
q=1

(Gq + 2Gq)
(
H(y − 2qL)− y

D

)]
.

These piecewise linear profiles are smoothly connected via regions in which the
cylinders reduce the volume. The above analysis enables it to be shown, for terms up
to order a, that this is achieved by the mean flow

U

D

(
1−
√
a2 − d2

L

)
x̂

[
(2nL+ d)− 8πL

(
1− 2nL+ d

D

) M∑
m=n

mAm

−4π(2nL+ d)

n−1∑
m=1

Am

(
1− 2ML

D

)
− 4An[d arccos(d/a)−√a2 − d2]

]
,

where y = 2nL+ d (1 6 n 6M) and |d| < a.
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In particular, the mean value of v for 2ML+ a < y < D is

U

D
x̂

[
y − 8πL

(
1− y

D

) M∑
m=1

mAm − πa2

2L

(
1− y

D

) M∑
q=1

(Gq + 2Gq)
]
,

from which the quantity f1/f2 in (6) is readily determined. Moreover, the constant
shear in the open channel allows f2, defined by (5), to be set equal to unity.

2.5. Modifications for an equilateral array

Suppose that the centres of the cylinders are instead placed at {(m+ 2l)L,
√

3mL; 1 6
m 6M,−∞ < l < ∞}. Then, corresponding to (34),

v =
U

D

[
yx̂−√3L

M∑
m=1

Am

{
v∞2 (x− mL, y,√3mL;D)

+
a2

4

〈(
∂2

∂x2
+

∂2

∂y2
0

)
v∞2 (x, y, y0;D)

〉
y0=
√

3mL

}

−a
2

2

M∑
q=1

{
(Gq − 2Gq)vR2 (x− qL, y,√3qL;D) + 2Gq ∂v

∞
2

∂y0

(x− qL, y,√3qL;D)

}]
,

(36)

in which equations (32) are modified to

Gn = 1−√3π

M∑
m=1

EnmAm, Gn = 1−√3π

M∑
m=1

EnmAm (37)

and the coefficient matrices are now given, instead of (33), by

Enm = −2
√

3mL

D
+

sinh π
√

3(n+ m)

cosh π
√

3(n+ m)− (−1)n−m

+2

∞∑
s=1

U2x

(√
3πms,

√
3πns,

sπD

L

)
(−1)(n−m)s

−


sinh π

√
3(n− m)

cosh π
√

3(n− m)− (−1)n−m
(n 6= m)

0 (n = m),

1
2
[Enm + Enm] = −2

√
3mL

D
+

sinh
√

3π(n+ m)− π√3(n+ m)(−1)n−m

cosh π
√

3(n+ m)− (−1)n−m

+

∞∑
s=1

∂V∞2x
∂y

(√
3πns,

√
3πms,

sπD

L

)
(−1)(n−m)s
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−


sinh
√

3π(n− m)− π√3(n− m)(−1)

cosh π
√

3(n− m)− (−1)n−m
(n 6= m)

0 (n = m). (38)

Thus the simultaneous equations (35) are modifed to

n = An

{
− ln

πa

2L
− 1

2
− π2a2

12L2
+ ln sinh

√
3πn+

√
3πn coth

√
3πn

−6πn2L

D
− π2a2

4L2 sinh2
√

3πn
+
π

L

∞∑
s=1

V∞2x

(√
3πns,

√
3πns,

sπD

L

)

+
πa2

2L

[
∇2

∞∑
s=1

V∞2x

(
sπy

L
,
sπy0

L
;
sπD

L

)
cos

sπx

L

]
(0,
√

3nL,
√

3nL)

}

+

M∑
m=1,m6=n

Am

{
− 1

2
ln

[
cosh π

√
3(n− m)− (−1)n−m

cosh π
√

3(n+ m)− (−1)n−m

]
− 6πnmL

D

−π
√

3

2

[
(n− m) sinh π

√
3(n− m)

cosh π
√

3(n− m)− (−1)n−m
− (n+ m) sinh π

√
3(n+ m)

cosh π
√

3(n+ m)− (−1)n−m

]

+
π

L

∞∑
s=1

V∞2x

(√
3πns,

√
3πms,

sπD

L

)

+
π2a2

2L2

[
1

cosh π
√

3(n− m)− (−1)n−m
− 1

cosh π
√

3(n+ m)− (−1)n−m

]

+
πa2

4L

[
(∇2 + ∇2

0)

∞∑
s=1

V∞2x

(
sπy

L
,
sπy0

L
;
sπD

L

)
cos

sπx

L

]
(0,
√

3nL,
√

3mL)

}

+
πa2

4
√

3L2

M∑
q=1

[(Gq − 2Gq)Eqn + 2Gq(Eqn + Eqn)] (1 6 n 6M), (39)

in which the last summation reduces, after substitution of (32) and a cancelation, to

πa2

4
√

3L2

M∑
q=1

(Eqn + 2Eqn)− π2a2

4L2

M∑
m=1

Am

M∑
q=1

(EqmEqn + 2EqmEqn).

The mean value of v for
√

3ML+ a < y < D is now

U

D
x̂

[
y − 6πL

(
1− y

D

) M∑
m=1

mAm − πa2

2L

(
1− y

D

) M∑
q=1

(Gq + 2Gq)
]

and the relation to (5) and (6) is unchanged.
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2.6. Modifications for pressure-driven flow

Suppose that the basic shear flow U(y/D)x̂ is replaced by

G

2µ
y(D − y)x̂

(
G =

∆P

2L

)
,

where G denotes, as in (7), the mean pressure gradient in the −x̂-direction. Then,
corresponding to (34),

v =
GD

2µ

[
y
(

1− y

D

)
x̂− 2L

M∑
m=1

Am

{
v∞2 (x, y, 2mL;D)

+
a2

4

〈(
∂2

∂x2
+

∂2

∂y2
0

)
v∞2 (x, y, y0;D)

〉
y0=2mL

}

−a
2

2

M∑
q=1

{
(Gq − 2Gq)vR2 (x, y, 2qL;D) + 2Gq ∂v

∞
2

∂y0

(x, y, 2qL;D)

}]
, (40)

in which equations (32) are modified to

Gn = 1− 4nL

D
− 2π

M∑
m=1

EnmAm, Gn = 1− 4nL

D
− 2π

M∑
m=1

EnmAm (41)

and the coefficient matrices are still given by (33). Thus, on the left-hand side of the
simultaneous equations (35), n is replaced by

n

(
1− 2nL

D

)
− a2

4DL

and

−πa
2

8L2

M∑
q=1

(Eqn + 2Eqn) by − πa2

8L2

M∑
q=1

(
1− 4qL

D

)
(Eqn + 2Eqn).

The mean value of v for 2ML+ a < y < D is

GD

2µ
x̂
(

1− y

D

)[
y − 8πL

M∑
m=1

mAm − πa2

2L

M∑
q=1

(Gq + 2Gq)
]

in which the shear rate now varies linearly with y. Since the slip velocity is small, this
expression furnishes an interfacial shear rate γ̇w ' GW/2µ, consistent with (9).

3. Results
3.1. Comparisons to established results

Now that solutions are available for the velocity fields, the first obligation is to
provide evidence that the solutions are correct and that calculations based on them
are carried out correctly. Unfortunately there are no special cases of rods in channels
which facilitate a direct comparison to a known result. The only known solutions for
arrays of rods are those for unbounded arrays, i.e. those without edges. Such an array
can be simulated using the present technique by completely filling the channel with
small rods so that flow through the core is essentially flow through an unbounded
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k/a2, Present results

M 9 19 5 5
k/a2 D/L 20 40 20 40

φ Formula (42) 2ML/D 0.9 0.95 1/2 1/4

0.002 296 298 302
0.004 126 127 131
0.006 76.1 76.2 76.5
0.010 39.4 39.4 39.4 39.4 39.4
0.020 15.5 15.5 15.5 15.5 15.5
0.040 5.70 5.69 5.70 5.69 5.70
0.060 3.04 3.04 3.04 3.04 3.04
0.100 1.283 1.28 1.28 1.28 1.28

Table 1. Comparison of k/a2 values.

array. Hence calculations were carried out with the channel completely filled with
nine, and then 19, equally-spaced rows of rods for an applied pressure gradient.
The velocity distributions between adjacent rows were found to be identical, and
the common distribution was averaged to yield the drift velocity UD . From UD , the
permeability k was found from Darcy’s law. Values of k over a range in φ were
compared to values of k calculated from the established formula for a square array,
for which there is agreement from several sources on the first three terms (Jackson &
James 1986):

k

a2
=

1

8φ

[
ln

1

φ
− 1.476 + 2φ+ O(φ2)

]
. (42)

As a further check, values of k were calculated for rods only partially filling the
channel, because flow through the central portion of the array still approximates flow
through an unbounded array. These calculations were carried out for quarter- and
half-filled channels, with various numbers of rows. Starting from the second row, the
averaged velocity was found to be the same from row to row, even for as few as five
rows. The average velocity was again used to find the array permeability. All of the
results for k are presented in table 1, for φ ranging from 0.002 to 0.1. The second
column gives values of k/a2 from the formula above, the next two columns are values
for completely-filled channels, and the last two are values for partially-filled channels.

The table shows excellent agreement between values from the present work and
values from the established formula, (42). In fact, agreement is generally to three
significant figures, which is better than expected because the order of the neglected
terms in the analyses is o(φ). For the partially-filled channels, calculations were carried
out for various numbers of rows, but only results for the 5-row cases are presented.
In these cases, k was based on the average velocity between the 2nd and 3rd rows
(the same as that between the 3rd and 4th rows) and these k values agree well
with those for completely-filled channels. The close agreement also implies that shear
effects occur only between the wall and the 1st row and between the 4th row and the
interface. Shear does not seem to persist from one row to the next. But the crucial
point is that the table confirms that the present technique is accurate.
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Figure 4. Dimensionless velocity profiles close to the interface of a square array. The array consists
of five rows of cylinders occupying the lower 1/2 of the channel, and shear flow is created by the
unseen upper wall moving at speed U (at ordinate value 10). The four cylinders shown are in the
top two rows of the array; they are drawn to scale and located relative to the velocity profiles.
The solid upper curve is the profile found by the present technique, evaluated at the midplane
between cylinders, and the dashed curve is the profile predicted by Brinkman’s equation in the
porous medium and Stokes equation in the channel. φ = 0.01, M = 5, D/L = 20, 2ML/D = 1/2.

3.2. Shear-driven flows

When the flow is shear-driven, the flow changes from shear flow in the channel to
zero flow in the array, and figure 4 illustrates how quickly the change takes place. The
physical situation in the figure is an array of five rows occupying the bottom half of
the channel. The figure focuses on the interfacial region, starting at the 4th row, and
the rods shown are to scale. The upper curve is a velocity profile predicted by the
present work and the lower curve, the ‘Brinkman Model’, is obtained by setting the
pressure gradient equal to zero in the Stokes and Brinkman equations and matching
the linear velocity distribution in the channel, where the velocity gradient is γ̇, with
the exponential velocity distribution in the porous medium, as given by the solution
of the Brinkman equation in (17). The two profiles in figure 4 actually converge at
the outer wall where the ordinate is 10 and abscissa is 1.0, but this convergence
is well outside the plot. Comparing these two profiles is not strictly valid because
the analytical profile is the profile along the midplane between the rods; hence it
is a particular profile and not an average like the Brinkman profile. However, if
the analytical profile were the average (in the x-direction), the difference between
the profiles would be even larger. The midplane profile is shown instead because it
illustrates the maximum penetration of the outer flow and because the average profile
turns out to consist of straight segments connected by curves, as described in § 2.4,
and so is less useful. What figure 4 makes especially clear is that, for widely spaced
rods, there is much less penetration than suggested by intuition and predicted by
Brinkman’s equation.

Attention is now focused on the slip velocity Us, the quantity of primary interest.
In this work, the slip velocity is the average velocity on the plane tangent to the outer
edges of the cylinders in the first row. In our view, this plane represents the interface
better than any other simply-located plane, including the plane through the cylinder
axes, which has been favoured by some authors (e.g. Larson & Higdon 1986). The
tangent plane is the most logical one for flow in the channel because it is the first
contact of that flow with the array, thus becoming a boundary of the channel. In
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Us/γ̇
√
k

Number Filling φ
of rows Spacing fraction

M D/L 2ML/D 0.0001 0.001 0.01 0.10

5 40 1/4 0.352 0.294 0.248 0.234
10 80 1/4 0.352 0.294 0.247 0.231
20 160 1/4 0.352 0.294 0.247 0.230
5 20 1/2 0.352 0.294 0.250 0.239

20 80 1/2 0.352 0.294 0.250 0.231
15 40 3/4 0.352 0.294 0.248 0.231

Table 2. Values of the dimensionless slip velocity, Us/γ̇
√
k, for square arrays of rods, partially

filling the channel. Note: for the Brinkman model, Us/γ̇
√
k = 1.0, from equation (17).

showing how Us depends on flow and array conditions, Us will be related to the
external shear rate, following the dimensional reasoning at the outset, and not to
the wall velocity as in figure 4. As follows from equations (2) and (3), Us will be
presented in terms of the dimensionless group Us/γ̇

√
k. This group is the inverse of

the slip coefficient α introduced earlier and used in previous studies. We prefer to
use a dimensionless group which is proportional to Us because Us is the quantity of
interest. Us/γ̇

√
k is obviously a dimensionless slip velocity but the group can equally

be considered a dimensionless length because Us/γ̇ is a measure of the depth of
penetration and

√
k is the length scale for the porous medium. Here the emphasis is

on slip rather than penetration; accordingly Us/γ̇
√
k will be referred to hereafter as

the dimensionless slip velocity.

Values of Us/γ̇
√
k were calculated for square arrays over an extensive range of

conditions: for various numbers of rows, for a three-decade range in φ, and for
different filling fractions (the fraction of the channel occupied by the porous medium).
These values are presented in table 2. To put these values in context, it is noted that
the value of Us/γ̇

√
k is 1 when the Brinkman model is used, which comes from

matching equation (17) with the linear velocity distribution Us + γ̇ỹ in the channel.

The first three rows of the table pertain to channels 1/4-filled with arrays. The
entries show that, as M increases from 5 to 20 with φ fixed, Us/γ̇

√
k changes only in

the third significant figure. That is, the result is independent of the size of the cylinders,
relative to the width of the channel. The last three rows, for 1/2-filled and 3/4-filled

channels, give the same values of Us/γ̇
√
k as those for the 1/4-filled channels, for the

same values of φ. Table 2 therefore demonstrates that the dimensionless slip velocity
for a square array depends only on one parameter, the solid volume fraction.

Because equation (3) states that Us/γ̇
√
k should not depend on φ, the actual

dependence has been plotted and is the dashed curve in figures 7 to 9 below. The
curve demonstrates that the dependence is not strong and shows more clearly than
table 2 that Us/γ̇

√
k is virtually constant at 0.25 over the φ range from 0.01 to 0.1.

A constant value in this range is useful because the most practical range in φ is that
decade.

In the dimensional reasoning which led to equation (3), it was assumed that the
length scale of the porous medium is given by a single parameter,

√
k. With a rod
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array, however, there are two length scales, and so (3) and the other general relations
in the dimensional reasoning need to be modified accordingly. When two length scales
are used instead of one, it is straightforwardly found that Us/γ̇

√
k then depends on

φ, for a square array. Hence table 2 and the dashed curve are consistent with the
dimensionless equations when they are revised. At the same time, the dependence on φ
is peculiar because one might expect that, if Us/γ̇

√
k were constant or approximately

so over a range in φ, the range would be the asymptotic one, with φ going to zero.
It is a mystery to us why Us/γ̇

√
k is constant over the φ decade from 0.008 to 0.08.

The value of unity for Us/γ̇
√
k from the Brinkman model, as described in the

text and as noted at the bottom of table 2, is much higher than the values in the
table. This comparison shows that the Brinkman model overpredicts the slip velocity
by a factor of about four, and this outcome is consistent with the curves in figure
4. This overprediction would not be reduced much if the effective viscosity µ∗ were
reintroduced and made larger than µ. As described in the Introduction, prior work
has established that µ∗/µ exceeds unity by O(φ). But an O(φ) modification will not
cause the Brinkman equation to fit much better nor will it correct the four-fold
discrepancy at the interface. Furthermore, table 2 shows that the discrepancy is not a
function of φ. Hence even if the Brinkman equation were to include µ∗, it would still
overpredict the slip velocity by several times.

The above results apply to square arrays, and corresponding calculations were
carried out for triangular arrays of the type illustrated in figure 3. A comparison
between the two geometries is presented in table 3.

In the table, there are only small differences between the two geometries, differences
which may not be significant because they are of the same order as the neglected terms
in the analysis. At the same time, only small differences would be expected because
of minimal penetration, as shown in figure 4. That is, the geometrical difference in
the two arrays starts in the second row and figure 4 reveals that the outer flow barely
penetrates to the second row. Hence this geometrical variation does not produce a
different result. Other geometrical variations with rods were not explored because
calculations using the present technique are too difficult.

3.3. Pressure-driven flows

Velocity distributions were calculated for flows driven by pressure, for the same array
configurations as those for the shear-driven flows. A sample result is shown in figure
5. The solid volume fraction of the array in the figure is very small and was chosen
to produce a visible slip velocity. Two velocity profiles are presented, one predicted
for the midplane by the present method and the other predicted using Stokes and
Brinkman’s equations. In these equations, the pressure gradient term is not zero but is
constant, and the prediction based on the two equations is obtained by matching the
quadratic profile in the channel (the solution of Stokes equation) with the solution
of Brinkman’s equation in the array. The matching consists of making the velocity
and the velocity gradient (or the shear stress) continuous across the interface. The
velocity profile found from Brinkman’s equation contains the uniform drift velocity
UD as well as the usual exponential term. Both profiles in figure 5 show the expected
parabolic shape in the channel and the near-uniform velocity in the array. The only
place where the two profiles differ significantly is at the interface, which again shows
that the Brinkman equation significantly overpredicts the slip velocity.

Figure 5 confirms that a low value of φ is indeed required for a significant slip
velocity, at least relative to the velocity in the channel. Our calculations revealed that
the velocity depends on the fraction of the channel filled by the porous medium.
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Us/γ̇
√
k

φ 0.001 0.003 0.01 0.03 0.10

Square 0.294 0.269 0.250 0.248 0.236
Triangular 0.298 0.275 0.256 0.255 0.255

Table 3. Square versus triangular arrays.
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Figure 5. Velocity distributions for pressure-driven flow in a channel half filled with a square array
of widely-separated cylinders. As in figure 4, the solid curve is the profile found by the present
technique and the dashed curve is the profile predicted by Brinkman’s equation in the porous
medium and Stokes equation in the channel. M = 5, D/L = 20, 2ML/D = 1/2, φ = 0.001.

To show how Us depends on φ and the filling fraction, figure 6 presents values of
Us/Um over ranges in both parameters, where Um is the velocity in the middle of
the channel and approximates the maximum velocity. The figure shows that Us/Um

decreases gradually over three decades in φ, and that Us/Um is less than 10% for
filling fractions up to 1/2. Us/Um rises above 10% only when φ is less than about
0.003 and when the channel space is limited, as when the filling fraction is 3/4.
Perhaps the most important result in the graph is that, in the practical range of φ,
i.e. for φ above 0.01, the slip velocity is from 1% to 10% of the maximum velocity,
which means that slip can be ignored in many engineering situations.

The results from both types of flow demonstrate that penetration is small, even
for widely separated cylinders. This finding suggests that the outside row provides a
far larger resistance than the other rows, and this aspect is being explored in further
work.

3.4. Comparison of shear-driven and pressure-driven flows

In the dimensional reasoning presented at the beginning, it was argued that shear-
driven and wall-driven cases are related because the velocity distribution near the wall
in pressure-driven flow is approximately linear and thus is similar to the linear profile



68 D. F. James and A. M. J. Davis

0.20

0.16

0.12

0.08

0.04

0
10–4 10–3 10–2 10–1

15
10
5

20
10

40
40
40
80
80

3/4
1/2
1/4
1/2
1/4

M D/L 2ML/D

φ

Us
Um

Figure 6. The slip velocity, relative to the mid-channel velocity Um, for pressure-driven flow over
and through a square array of cylinders. The slip velocity decreases with φ, as expected, and depends
on the number of rows (M) and on the width of the array relative to the total width of the channel
(2ML/D).
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Figure 7. Comparison of the dimensionless slip velocity for shear- and pressure-driven flows. The
dashed curve pertains to shear-driven flow for all array conditions (table 2). The data points pertain
to pressure-driven flow through a square array of 15 cylinders occupying 3/4 of the channel width.

in shear-driven flow. More specifically, equation (13) shows that, when the interface
is far from the channel wall in a pressure-driven flow, the slip velocity should be
the same as that in the comparable shear-driven case. Data from the two flows are
presented in figures 7 to 9. Data for the 3/4-filled channel are presented first because
the outer wall is closest and its proximity makes the two flow types least similar. In
figure 7, the dashed line is the dimensionless slip velocity for shear-driven flows – the
line pertains to all filling fractions, as shown by table 2 – and the data points are for
pressure-driven flows. The data in figure 7 are for 15 rows of rods in the channel
with D/L set equal to 40, and so the distance to the wall W is five times the distance
between rods, 2L. Since W/2L is not large, it is expected that the wall influences the
flow at the interface. The figure shows that the influence is large, because the slip
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Figure 8. As figure 7 but when the cylinder array occupies half of the channel. The data points are
for pressure-driven flow for various combinations of cylinder sizes and numbers of rows that create
a 1/2-filled channel.

velocity is 40% less than that in the equivalent shear-driven flow. In this case, then,
the wall retards the flow at the interface significantly.

The wall should have less influence when it is further away, and figure 8 presents
data for 1/2-filled channels. The data sets in figure 8, for different values of D/L,
correspond to different values of the ratio W/2L. For the data set D/L = 20, W/2L
is 5 and so the data should be identical to the values in the previous graph, as indeed
they are. For the intermediate data set, W/2L is 10 and for the highest, W/2L is 20.
At 20, the outer wall should have little influence but it still causes the slip velocity to
be about 10% lower than that for the equivalent shear-driven case.

When the channel is 1/4-filled, differences between the two cases should be even
smaller and data are given in figure 9. For the three values of D/L in the plot,
the corresponding values of W/2L are 15, 30 and 60. Only in the last case are
slip velocities within several percent of the shear-driven values. Hence this last plot
demonstrates that W/2L must be of order 102 for the two cases to coincide.

3.5. Comparisons to prior studies

In relating the present results to prior ones, the previous study which is most relevant
is the numerical study by Larson & Higdon (1987) because their study pertains to
shear-driven flow over a square array of rods. As described earlier in this paper, they
found circulation between the two outermost rows for φ between about 0.04 and 0.1.
We did not find any circulation for φ between 0.001 and 0.1 – only positive values of
the velocity in the shear direction. However, velocities inside the medium are a small
fraction of the wall velocity (figure 4) and the O(φ) accuracy of the present technique
may not be adequate for the small velocities associated with circulation. Including
more terms in the present technique would not only be prohibitively difficult but also
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Figure 9. As figure 7 but for square arrays filling 1/4 of the channel. The data pertain to different
combinations of row numbers and cylinder sizes that make the channel 1/4-filled.

may not provide the desired accuracy because almost equal terms in the array cancel.
Hence it seems that circulation must be investigated numerically or experimentally.

Larson & Higdon found values of Us but direct comparisons between our values
and theirs are difficult because they calculated Us by two methods and the two yielded
widely-different values, as described in the introductory section of this paper. By either
method, they found mostly negative values for Us, while we found only positive values.
The only possible type of comparison is to an order of magnitude for their positive
values of Us, which are for highly dilute systems. When their dimensionless velocity
is re-cast in terms of our dimensionless slip velocity and when allowance is made for
their choice of interface (theirs is the plane through cylinder centres), their values of
our dimensionless slip velocity lie between 0 to 0.4, which bracket our near-constant
value of 0.3 in the dilute regime.

In the other theoretical work involving an array of rods (Sahraoui & Kaviany
1992), the φ range was 0.2 and above. When their results are expressed in terms of
our dimensionless slip velocity, this quantity is 0.25 at φ = 0.2 and increases with φ.
Our φ range is up to 0.1 and so does not overlap with theirs. However, we found the
dimensionless velocity to be constant at 0.25 for φ up to 0.1, as presented in table 2,
and so the two sets of results are compatible.

The present findings should be related to the work of Sangani & Behl (1988)
because the large discrepancies we found with Brinkman’s equation appear to be
inconsistent with their findings. Their porous media consisted of regularly-spaced
spheres and, with µ∗ set equal to µ in Brinkman’s equation, they found that the
“agreement between the exact numerical calculations and the Brinkman equation is
generally very good” for the slip velocity. But they defined the slip velocity on a
different plane than we did, one beyond the tangent plane for φ less than 0.1. Their
further distance is L − a in our notation. Further into the external flow, velocities
are much higher of course, and so better agreement would be expected. We would
have obtained good agreement too had we selected a plane further out. In our case,
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because Us/γ̇
√
k is close to 0.3 over a wide range in φ, the further distance is about

0.7
√
k. This distance is not L−a but it is of the same order and the difference is most

likely related to the different geometries – a cubical array of spheres versus a square
array of rods.

The present work can also be related to work on flow penetration into a polymer
brush. Doyle, Shaqfeh & Gast (1998) used Brownian dynamics simulations to deter-
mine the chain density and velocity field within a brush over which there is a shear
flow. Their results show that the density in the outer region of the brush is about
1/10 the density in the interior and that the shear flow penetrates about the first 20%
of the brush, i.e. it penetrates the region of low density. These values are evident in
their figure 2(a), which also shows that the velocity Us is about 0.6U, where U is the
velocity of the outer wall. This value of Us can be related to present values when the
variable chain density and the closer outer wall are accounted for. As to density, since
the overall φ value (or areal fraction in their terms) is 0.125 in the brush of figure
2(a), the φ value in the outer region is about 0.012. This value is close to 0.01 in our
figure 4, where it is seen that Us is about 0.025U. But the open channel in figure 4 is
much wider than the one in Doyle et al. (1998), specifically 1/0.13 wider. If our open
section had this width, then our value of Us would be about 0.025U/0.13 or about
0.2U, which is of the same order as their value of 0.6U. Better agreement should not
be expected because the two situations – flexible chains extending into the flow versus
rods across the flow in a fixed array – are only roughly comparable. Even so, a higher
Us would be expected for the brush because the flow can penetrate this arrangement
more easily.

Comparisons can also be made to experimental values. As noted in the Introduction,
experimental investigators determined values of α, the inverse of our dimensionless
slip velocity. For a variety of materials, the experimenters found values of α from 0.1
to 4. Our rod array is not a particularly good model for the non-fibrous materials
used in the experiments, but our value of 0.25 for the dimensionless slip velocity
corresponds to an α value of 4, which is at the edge of the experimental values.

4. Concluding remarks
The present work suggests that the Brinkman equation is not a good model for flow

at the interface of a low-solidity porous medium, at least not for a medium composed
of fibres oriented across the flow. The equation predicts a dimensionless slip velocity
of 1, while we found that velocity to be around 0.3 over a wide range of conditions.
Moreover, the Brinkman equation predicts that the outer flow penetrates the medium
to a depth of

√
k or to about half the distance to the second row in an array, while

our results show very little penetration. Since our results are accurate to O(φ), it is
concluded that the Brinkman model does not provide an accurate description of flow
at the interface of an array or rods.

The most practical results of the present work are values of the slip velocity, for these
values provide the second boundary condition for flow in a channel. The values are
presented here in terms of a dimensionless slip velocity, and this quantity was found
to be around 0.3 for shear-driven flows and to be less than that for pressure-driven
flows, the difference depending on the physical situation. These values, contained in
figures 7 to 9, should be useful in design situations where an estimate is wanted for
the slip velocity in channel flow, when the channel is adjacent to a fibrous porous
medium.
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